Skip to main content

Human Population Increase and Changes in Production and Usage of Trace Elements in the Twentieth Century and First Decades of the Twenty-First Century

  • Chapter
  • First Online:
Mammals and Birds as Bioindicators of Trace Element Contaminations in Terrestrial Environments

Abstract

People currently live in a unique time, the Anthropocene. Since the acceleration of the Industrial Revolution (~1850), humans have become a huge geological force. In 1800, 1 billion people lived in the world, but in 2018 the global human population exceeded 7.6 billion. The beginning of large-scale human impacts during the 1950s was related to the dynamics of global population growth thus far unprecedented in human history. The years 1950–1970 were defined by a quickly expanding chemical industry and the widespread popular belief that so-called progress would result in seemingly endless improvement in the quality of everyday life but that led to destruction and pollution of environment with huge amounts of chemicals (including metals) from industry, agriculture and transport. Anthropogenic metal emission still persists in the world, but its main sources are no longer located in Europe and North America, however, in Asia where half of the global population live. For example, in 2015 aluminium ore mining increased 33 times compared to 1950 and the mining of other economically important metals [iron (Fe), copper (Cu), zinc (Zn)] >6 times. In the case of highly toxic metals such as cadmium (Cd) and lead (Pb), this increase was 4.3 higher, respectively, but there was a 50% decrease in mercury (Hg) production. It is estimated that at least 60 elements (out of 118 naturally occurring on Earth) were mobilized from minerals and introduced into biogeochemical cycles on a larger scale (>50%) as the result of human activity rather than natural causes. Never in Earth’s history a single species has dominated the biosphere the way Homo sapiens population does now.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo-Whitehouse K, Duffus ALJ (2009) Effects of environmental change on wildlife health. Philos Trans R Soc B 364:3429–3438

    Article  Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risk of metals. Springer, New York

    Book  Google Scholar 

  • Arndt NT, Fontboté L, Hedenquist JW, Kesler SE, Thompson JFH, Wood DG (2017) Future global mineral resources. Geochem Perspect 6:1–171

    Article  Google Scholar 

  • Assi MA, Hezmee MNM, Haron AW, Sabri MYM, Rajion MA (2016) The detrimental effects of lead on human and animal health. Vet World 9:660–671

    Article  CAS  Google Scholar 

  • ATSDR (2017) Case studies in environmental medicine. Lead toxicity. Course WB2832, https://www.atsdr.cdc.gov/csem/csem.asp?csem=34&po=8

  • Balatsky AV, Balatsky GI, Borysov SS (2015) Resource demand growth and sustainability due to increased world consumption. Sustainability 7:3430–3440

    Article  Google Scholar 

  • Balmford A (2013) Pollution, politics, and vultures. Science 339:653–654

    Article  CAS  Google Scholar 

  • Bartlett AA (1998) Reflections on sustainability, population growth, and the environment. Renew Resour J 15:6–23

    Google Scholar 

  • Bernanke J, Kohller HG (2009) The impact of environmental chemicals on wildlife vertebrates. Rev Environ Contam Toxicol 198:1–47

    CAS  Google Scholar 

  • Bernhardt ES, Rosi EJ, Gessner MO (2017) Synthetic chemicals as agents of global change. Front Ecol Environ 15:84–90

    Article  Google Scholar 

  • Bloodworth A, Gunn G (2012) The future of the global minerals and metals sector: issues and challenges out to 2050. Geosciences 15:90–97

    Google Scholar 

  • Blus LJ (2011) DDT, DDD and DDE in birds. In: Beyer WN, Meador JP (eds) Environmental contaminants in biota: interpreting tissue concentrations. CRC Press, Taylor & Francis, Boca Raton, pp 425–447

    Chapter  Google Scholar 

  • Bond DPG, Grasby SE (2016) On the causes of mass extinctions. Palaeogeogr Palaeoclimatol Palaeoecol 478:3–29

    Article  Google Scholar 

  • Bongaarts J (2009) Human population growth and the demographic transition. Philos Trans R Soc B 364:2985–2990

    Article  Google Scholar 

  • Borg K, Wanntrop H, Erne K, Hanko E (1969) Alkyl mercury poisoning in terrestrial Swedish wildlife. Viltrevy 6:301–379

    Google Scholar 

  • Bouwman H, Bornman R, van den Berg H, Kylin H (2013) DDT: fifty years since Silent Spring. In: Late lessons from early warnings: science, precaution, innovation, Chapter 11. Environment and Health Environmental Scenarios. EEA Report No 1/2013, Environmental European Agency, Luxembourg, pp 240–259

    Google Scholar 

  • Bradshaw CJA, Brook BW (2014) Human population reduction is not a quick fix for environmental problems. PNAS 111:16610–16615

    Article  CAS  Google Scholar 

  • Brondizio ES, O’Brien K, Bai X, Biermann F, Steffen W, Berkhout F et al (2016) Re-conceptualizing the Anthropocene: a call for collaboration. Glob Environ Chang 39:318–327

    Article  Google Scholar 

  • Brundtland GH (1987) Our common future. World Commission on Environment and Development, Oxford University Press, Oxford

    Google Scholar 

  • Candelone JP, Hong S, Pellone C, Boutron C (1995) Post-industrial revolution changes in large-scale atmospheric pollution of the Northern Hemisphere by heavy metals as documented in central Greenland snow and ice. J Geophys Res 100(D8):16605–16616

    Article  CAS  Google Scholar 

  • Carson R (1962) Silent spring. Houghton Mifflin, Boston

    Google Scholar 

  • Carvalho FP (2017) Pesticides, environment, and food safety. Food Energy Secur 6:48–60

    Article  Google Scholar 

  • Castello MJ (2015) Biodiversity: the known, unknown, and rates of extinction. Curr Biol 25:R362–R383

    Article  CAS  Google Scholar 

  • Chellan P, Sadler PJ (2015) The elements of life and medicines. Philos Trans A Math Phys Eng Sci 373:20140182

    Article  CAS  Google Scholar 

  • Clemencon R (2012) Welcome to the anthropocene: Rio+20 and the meaning of sustainable development. J Environ Dev 21:311–338

    Article  Google Scholar 

  • Cohen JE (2010) Beyond population: everyone counts in development. CGD Working Paper 220, Washington, DC Center for Global Development, http://www.cgdev.org/content/publications/detail/1424318

  • Corlett LT (2015) The Anthropocene concept in ecology and conservation. Trends Ecol Evol 30:36–41

    Article  Google Scholar 

  • Cox C (1991) Pesticides and birds: from DDT to today’s poisons. J Pestic Reform 11:2–6

    Google Scholar 

  • Crutzen PJ, Stoermer EF (2000) The “Anthropocene”. Glob Change Newsl 41:17–18

    Google Scholar 

  • Davidson AJ, Binks SP, Gediga J (2016) Lead industry life cycle studies: environmental impact and life cycle assessment of lead battery and architectural sheet production. Int J Life Cycle Assess 21:1624–1636

    Article  CAS  Google Scholar 

  • de Sherbinin A, Carr D, Cassels S, Jiang L (2007) Population and environment. Annu Rev Environ Resour 32:345–373

    Article  Google Scholar 

  • Ding L, Liu Z, Aggrey MO, Li C, Chen J, Tong L (2015) Nanotoxicity: the toxicity research progress of metal and metal-containing nanoparticles. Mini Rev Med Chem 15:529–542

    Article  CAS  Google Scholar 

  • Ewing B, Reed A, Galli A, Kitzes J, Wackernagel M (2010) Calculation methodology for the national footprint accounts, 2010 edition. Global Footprint Network, Oakland

    Google Scholar 

  • Fagerberg J, Srholec M (2017) Capabilities, economic development, sustainability. Camb J Econ 41:905–926

    Article  Google Scholar 

  • Franson JC, Pain D (2011) Lead in birds. In: Beyer WN, Meador JP (eds) Environmental contaminants in biota: interpreting tissue concentrations. CRC Press, Boca Raton, pp 563–593

    Chapter  Google Scholar 

  • Gall JE, Boyd RS, Rajakaruna N (2015) Transfer of heavy metals through terrestrial food webs: a review. Environ Monit Assess 187:201

    Article  CAS  Google Scholar 

  • Galloway JN, Schlesinger WH, Clark CM, Grimm NB, Jackson RB, Law BE et al (2014) Biogeochemical cycles. In: Melillo JM, Richmond TC, Yohe GW (eds) Climate Change Impacts in the United States: The Third National Climate Assessment, US Global Change Research Program, pp 350–368

    Google Scholar 

  • Gardner G, Prugh T, Renner M (2015) State of the world 2015: confronting hidden threats to sustainability. Worldwatch Institute, Washington

    Google Scholar 

  • Gaston KJ (2005) Biodiversity and extinction: species and people. Prog Phys Geogr 29:239–247

    Article  Google Scholar 

  • Giese B, Klaessig F, Park B, Kaegi R, Steinfeldt M, Wigger H et al (2018) Risks, release and concentrations of engineered nanomaterial in the environment. Sci Rep 8:1565

    Article  CAS  Google Scholar 

  • Gong X, Yang S, Zhang M (2017) Not only health: environmental pollution disasters and political trust. Sustainability 9:575

    Article  Google Scholar 

  • Gorman HS, Conway EM (2005) Monitoring the environment: taking a historical perspective. Environ Monit Assess 106:1–10

    Article  Google Scholar 

  • Goulson D (2014) Pesticides linked to bird declines. Nature 511:295–296. https://doi.org/10.1038/nature13642

    Article  CAS  Google Scholar 

  • Halada K, Shimada M, Ijima K (2008) Forecasting of the consumption of metals up to 2050. Mater Trans 49:402–410

    Article  CAS  Google Scholar 

  • Hayes TB, Hansen M (2017) From silent spring to silent night: agrochemicals and the Anthropocene. Elem Sci Anth 5:57

    Article  Google Scholar 

  • Horowitz HM, Jacob DJ, Amos HM, Streets DG, Sunderland EM (2014) Historical mercury releases from commercial products: global environmental implications. Environ Sci Technol 48:10242–10250

    Article  CAS  Google Scholar 

  • Hylander LD, Meili M (2003) 500 years of mercury production: global annual inventory by region until 2000 and associated emissions. Sci Total Environ 304:13–27

    Article  CAS  Google Scholar 

  • Ikeda M, Watanabe T, Nakatsuka H, Moriguchi J, Sakuragi S, Ohashi F, Shimbo S (2015) Cadmium exposure in general populations in Japan: a review. Food Saf 3:118–135

    Article  Google Scholar 

  • Inshakova E, Inshakov O (2017) World market for nanomaterials: structure and trends. MATEC Web of Conferences 129:02013

    Google Scholar 

  • Klee RJ, Graedel TE (2004) Elemental cycles: a status report on human or natural dominance. Annu Rev Environ Resour 29:69–107

    Article  Google Scholar 

  • Köhler HR, Triebskorn R (2013) Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond? Science 341:759–765

    Article  CAS  Google Scholar 

  • Kuklinska K, Wolska L, Namiesnik J (2015) Air quality policy in the U.S. and the EU – a review. Atmos Pollut Res 6:129–137

    Article  Google Scholar 

  • Ma WC (2011) Lead in mammals. In: Beyer WN, Meador JP (eds) Environmental contaminants in biota: interpreting tissue concentrations. CRC Press, Boca Raton, pp 595–607

    Chapter  Google Scholar 

  • Mackenzie FT, Chris S (1993) C, N, P, S biogeochemical cycles and global change. In: Wollast R, Mackenzie FT, Chou L (eds) Interactions of C, N, P and S biogeochemical cycles and global change. Springer, New York, pp 1–62

    Google Scholar 

  • McCauley DJ, Pinsky ML, Palumbi SR, Estes JA, Joyce FH, Warner RR (2015) Marine defaunation: animal loss in the global ocean. Science 347:1255641

    Article  CAS  Google Scholar 

  • McKee JK, Sciulli PW, Fooce CD, Waite TA (2004) Forecasting biodiversity threats due to human population growth. Biol Conserv 115:61–164

    Article  Google Scholar 

  • Meinert LD, Gilpin R, Robinson GR, Nassar NT (2016) Mineral resources: reserves, peak production and the future. Resources 5:14. https://doi.org/10.3390/resources5010014

    Article  Google Scholar 

  • Mikulewicz M, Chojnacka K, Kawala B, Gredes T (2017) Trace elements in living systems: from beneficial to toxic effects. Biomed Res Int 2017:8297814

    Article  Google Scholar 

  • Mitra A, Chatterjee C, Mandal FB (2011) Synthetic chemical pesticides and their effects on birds. Res J Environ Toxicol 5:81–96

    Article  CAS  Google Scholar 

  • Mohr S, Giurco D, Retamal M, Mason L, Mudd G (2018) Global projection of lead-zinc supply from known resources. Resources 7:17

    Article  Google Scholar 

  • Monastersky R (2015) The human age. Nature 519:145–147

    Article  CAS  Google Scholar 

  • Mosa A, Duffin J (2017) The interwoven history of mercury poisoning in Ontario and Japan. CMAJ 189:E213–E215

    Article  Google Scholar 

  • Nielsen FH (1984) Fluoride, vanadium, nickel, arsenic, and silicon in total parenteral nutrition. Bull NY Acad Med 60:177–195

    CAS  Google Scholar 

  • Nielsen FH (1998) Ultratrace elements in nutrition: current knowledge and speculation. J Trace Elem Exp Med 11:251–274

    Article  CAS  Google Scholar 

  • Nishijo M, Nakagawa H, Suwazono Y, Nogawa K, Kido T (2017) Causes of death in patients with Itai-itai disease suffering from severe chronic cadmium poisoning: a nested case–control analysis of a follow-up study in Japan. BMJ Open 7:e015694

    Article  Google Scholar 

  • Norwood BM, Forbes JM, Harris JCO (1951) Iron and steel. In: Bureau of mines, minerals yearbook, pp 696–714

    Google Scholar 

  • Nott MP, Rogers E, Pimm S (1995) Modern extinctions inthe kilo-death range. Curr Biol 5:14–17

    Article  CAS  Google Scholar 

  • Nriagu JO, Pacyna J (1988) Quantitative assessment of worldwide contamination of air, water and soil by trace metals. Nature 333:134–139

    Article  CAS  Google Scholar 

  • Obrist D, Kirk JL, Zhang L, Sunderland EM, Jiskra M, Selin NE (2018) A review of global environmental mercury processes in response to human and natural perturbations: changes of emissions, climate, and land use. Ambio 47:116–140

    Article  CAS  Google Scholar 

  • OECD (2011) Celebrating 40 years of the OECD environment policy committee (1971–2011). OECD, http://www.oecd.org/env/48943696.pdf

  • Olsson P, Moore ML, Westley FR, McCarthy DDP (2017) The concept of the Anthropocene as a game-changer: a new context for social innovation and transformations to sustainability. Ecol Soc 22:31

    Article  Google Scholar 

  • Peralta-Videa JR, Zhao L, Lopez-Moreno ML, de la Rosa G, Hong J, Gardea-Torresdey JL (2011) Nanomaterials and the environment: a review for the biennium 2008–2010. J Hazard Mater 186:1–15

    Article  CAS  Google Scholar 

  • Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN et al (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344:1246752

    Article  CAS  Google Scholar 

  • Racki G, Rakocinski M, Marynowski L, Wignall P (2018) Mercury enrichments and the Frasnian-Famennian biotic crisis: a volcanic trigger proved? Geology 46(6):543–546. https://doi.org/10.1130/G40233.1

    Article  CAS  Google Scholar 

  • Rauch JN (2009) Global mapping of Al, Cu, Fe, and Zn in-use stocks and in-ground resources. PNAS 106:18920–18925

    Article  CAS  Google Scholar 

  • Rauch JN, Pacyna JM (2009) Earth’s global Ag, Al, Cr, Cu, Fe, Ni, Pb, and Zn cycles. Global Biogeochem Cycles 23:GB2001

    Article  CAS  Google Scholar 

  • Ray PC, Yu H, Fu PP (2009) Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27:1–35

    Article  CAS  Google Scholar 

  • Ripple WJ, Wolf C, Newsome TM, Galetti M, Alamgir M, Crist E et al (2017) World scientists’ warning to humanity: a second notice. BioScience 67:1026–1028

    Article  Google Scholar 

  • Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2:3

    Article  Google Scholar 

  • Sen IS, Peucker-Ehrenbrink B (2012) Anthropogenic disturbance of element cycles at the Earth’s surface. Environ Sci Technol 46:8601–8609

    Article  CAS  Google Scholar 

  • Sodhi NS, Bickford D, Diesmos AC, Lee TM, Koh LP, Brook BW et al (2008) Measuring the meltdown: drivers of global amphibian extinction and decline. PLoS One 3:e1636

    Article  CAS  Google Scholar 

  • Soetan K, Olaiya CO, Oyewole OE (2010) The importance of mineral elements for humans, domestic animals and plants: a review. Afr J Food Sci 4:200–222

    CAS  Google Scholar 

  • Steffen W, Persson A, Deutsch L, Zalasiewicz J, Williams M, Richardson K et al (2011) The anthropocene: from global change to planetary stewardship. Ambio 40:739–761

    Article  Google Scholar 

  • Stokes LC, Giang A, Selin NE (2016) Splitting the south: China and India’s divergence in international environmental negotiations. Glob Environ Polit 16:12–31

    Article  Google Scholar 

  • Strode S, Lyatt Jaegle L, Selin NE (2009) Impact of mercury emissions from historic gold and silver mining: global modeling. Atmos Environ 43:2012–2017

    Article  CAS  Google Scholar 

  • Syvitski JPM (2012) Anthropocene: an epoch of our making. Glob Chang 78:12–15

    Google Scholar 

  • Thiéry A, De Jong L, Issartel J, Moreau X, Saez G, Barthélémy P et al (2012) Effects of metallic and metal oxide nanoparticles in aquatic and terrestrial food chains: biomarkers responses in invertebrates and bacteria. Int J Nanotechnol 9:181–203

    Article  Google Scholar 

  • Tian HZ, Zhu CY, Gao JJ, Cheng K, Hao JM, Wang K et al (2015) Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: historical trend, spatial distribution, uncertainties, and control policies. Atmos Chem Phys 15:10127–10147

    Article  CAS  Google Scholar 

  • Tong S, von Schirnding YE, Prapamontol T (2000) Environmental lead exposure: a public health problem of global dimensions. Bull WHO 78:1068–1077

    CAS  Google Scholar 

  • UCS (1992) World Scientists’ Warning to Humanity. Union of Concerned Scientists, https://www.ucsusa.org

  • UN Environment (2017) Global mercury supply, trade and demand. UN Environment – Economy Division Chemicals and Health Branch, Geneva, p 96. www.unep.org/chemicalsandwaste/resources/publications

  • UN WPP (2017) World Population Prospects: The 2017 Revision, Key Findings and Advance Tables. United Nations, Department of Economic and Social Affairs, Population Division, Working Paper No. ESA/P/WP/248, p 53

    Google Scholar 

  • UNEP (2012) One planet, how many people? A review of Earth’s carrying capacity. A discussion paper for the year of RIO+20

    Google Scholar 

  • UNEP/FAO UN (1991) Decision guidance documents. DDT. United Nations Environment Programme & Food and Agriculture Organization of the United Nations, Rome – Geneva, http://www.pic.int/Portals/5/DGDs/DGD_DDT_EN.pdf

  • United Nations (2004) World population to 2300. UN Department of Economic and Social Affairs, Population Division, p 240

    Google Scholar 

  • US GS (2011) Mineral commodity summaries 2011: US Geological Survey, US Department of the Interior

    Google Scholar 

  • US GS (2016) Iron and steel. In: Mineral commodity summaries 2016. US Geological Survey, US Department of the Interior

    Google Scholar 

  • van der Pluijm B (2014) Hello Anthropocene, goodbye holocene. Earth’s Future 2:566–568

    Article  Google Scholar 

  • van der Voet E, Salminen R, Eckelman M, Norgate T, Mudd G, Hisschier R et al (2013) Environmental challenges of anthropogenic metals flows and cycles. United Nations Environment Programme, p 235

    Google Scholar 

  • Viswanath B, Kim S (2016) Influence of nanotoxicity on human health and environment: the alternative strategies. In: de Voogt P (ed) Rev Environ Contam Toxicol 242:61–104

    Google Scholar 

  • Wang YP, Law RM, Pak B (2010) A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 7:2261–2282

    Article  CAS  Google Scholar 

  • Webb TJ, Mindel BL (2015) Global patterns of extinction risk in marine and non-marine systems. Curr Biol 25:506–511 [Probably a 9-fold lower marine extinction rate of species is currently observed in comparison to non-marine systems. On average between 20% and 25% of species worldwide are threatened with extinction]

    Google Scholar 

  • White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105:1073–1080

    Article  CAS  Google Scholar 

  • Whitmee S, Haines A, Beyrer C, Boltz F, Capon AG, de Souza Dias BF et al (2015) Safeguarding human health in the Anthropocene epoch: report of The Rockefeller Foundation-Lancet Commission on planetary health. Lancet 386:1973–2028

    Article  Google Scholar 

  • WHO (1996) Trace elements in human nutrition and health. World Health Organization, Geneva

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elżbieta Kalisińska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalisińska, E. (2019). Human Population Increase and Changes in Production and Usage of Trace Elements in the Twentieth Century and First Decades of the Twenty-First Century. In: Kalisińska, E. (eds) Mammals and Birds as Bioindicators of Trace Element Contaminations in Terrestrial Environments. Springer, Cham. https://doi.org/10.1007/978-3-030-00121-6_1

Download citation

Publish with us

Policies and ethics